Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(1): 113676, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38217855

RESUMO

Natural killer (NK) cells are the predominant lymphocyte population in the liver. At the onset of non-alcoholic steatohepatitis (NASH), an accumulation of activated NK cells is observed in the liver in parallel with inflammatory monocyte recruitment and an increased systemic inflammation. Using in vivo and in vitro experiments, we unveil a specific stimulation of NK cell-poiesis during NASH by medullary monocytes that trans-present interleukin-15 (IL-15) and secrete osteopontin, a biomarker for patients with NASH. This cellular dialogue leads to increased survival and maturation of NK precursors that are recruited to the liver, where they dampen the inflammatory monocyte infiltration. The increase in the production of both osteopontin and the IL-15/IL-15Rα complex by bone marrow monocytes is induced by endotoxemia. We propose a tripartite gut-liver-bone marrow axis regulating the immune population dynamics and effector functions during liver inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Monócitos , Osteopontina , Interleucina-15 , Medula Óssea , Inflamação , Células Matadoras Naturais , Camundongos Endogâmicos C57BL
3.
Immunity ; 56(1): 78-92.e6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630919

RESUMO

Tissue repair processes maintain proper organ function following mechanical or infection-related damage. In addition to antibacterial properties, mucosal associated invariant T (MAIT) cells express a tissue repair transcriptomic program and promote skin wound healing when expanded. Herein, we use a human-like mouse model of full-thickness skin excision to assess the underlying mechanisms of MAIT cell tissue repair function. Single-cell RNA sequencing analysis suggested that skin MAIT cells already express a repair program at steady state. Following skin excision, MAIT cells promoted keratinocyte proliferation, thereby accelerating healing. Using skin grafts, parabiosis, and adoptive transfer experiments, we show that MAIT cells migrated into the wound in a T cell receptor (TCR)-independent but CXCR6 chemokine receptor-dependent manner. Amphiregulin secreted by MAIT cells following excision promoted wound healing. Expression of the repair function was probably independent of sustained TCR stimulation. Overall, our study provides mechanistic insights into MAIT cell wound healing function in the skin.


Assuntos
Anfirregulina , Antígenos de Histocompatibilidade Classe I , Células T Invariantes Associadas à Mucosa , Cicatrização , Animais , Humanos , Camundongos , Anfirregulina/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
4.
Front Immunol ; 13: 1061959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569860

RESUMO

NK cells are innate lymphocytes involved in a large variety of contexts and are crucial in the immunity to intracellular pathogens as well as cancer due to their ability to kill infected or malignant cells. Thus, they harbor a strong potential for clinical and therapeutic use. NK cells do not require antigen exposure to get activated; their functional response is rather based on a balance between inhibitory/activating signals and on the diversity of germline-encoded receptors they express. In order to reach optimal functional status, NK cells go through a step-wise development in the bone marrow before their egress, and dissemination into peripheral organs via the circulation. In this review, we summarize bone marrow NK cell developmental stages and list key factors involved in their differentiation before presenting newly discovered and emerging factors that regulate NK cell central and peripheral maturation. Lastly, we focus on the impact inflammatory contexts themselves can have on NK cell development and functional maturation.


Assuntos
Células Matadoras Naturais , Diferenciação Celular , Processos de Crescimento Celular
5.
EMBO J ; 41(19): e108536, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35924455

RESUMO

During development, hematopoietic stem cells (HSCs) are produced from the hemogenic endothelium and will expand in a transient hematopoietic niche. Prostaglandin E2 (PGE2) is essential during vertebrate development and HSC specification, but its precise source in the embryo remains elusive. Here, we show that in the zebrafish embryo, PGE2 synthesis genes are expressed by distinct stromal cell populations, myeloid (neutrophils, macrophages), and endothelial cells of the caudal hematopoietic tissue. Ablation of myeloid cells, which produce the PGE2 precursor prostaglandin H2 (PGH2), results in loss of HSCs in the caudal hematopoietic tissue, which could be rescued by exogeneous PGE2 or PGH2 supplementation. Endothelial cells contribute by expressing the PGH2 import transporter slco2b1 and ptges3, the enzyme converting PGH2 into PGE2. Of note, differential niche cell expression of PGE2 biosynthesis enzymes is also observed in the mouse fetal liver. Taken altogether, our data suggest that the triad composed of neutrophils, macrophages, and endothelial cells sequentially and synergistically contributes to blood stem cell expansion during vertebrate development.


Assuntos
Hemangioblastos , Peixe-Zebra , Animais , Dinoprostona/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Prostaglandina H2/metabolismo
6.
Front Immunol ; 13: 846923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281021

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide and its incidence continues to rise globally. Various causes can lead to its development such as chronic viral infections causing hepatitis, cirrhosis or nonalcoholic steatohepatitis (NASH). The contribution of immune cells to HCC development and progression has been extensively studied when it comes to adaptive lymphocytes or myeloid populations. However, the role of the innate lymphoid cells (ILCs) is still not well defined. ILCs are a family of lymphocytes comprising five subsets including circulating Natural Killer (NK) cells, ILC1s, ILC2s, ILC3s and lymphocytes tissue-inducer cells (LTi). Mostly located at epithelial surfaces, tissue-resident ILCs and NK cells can rapidly react to environmental changes to mount appropriate immune responses. Here, we provide an overview of their roles and actions in HCC with an emphasis on the importance of diverse signaling pathways (Notch, TGF-ß, Wnt/ß-catenin…) in the tuning of their response to HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Imunidade Inata , Células Matadoras Naturais , Transdução de Sinais
7.
Immunol Rev ; 302(1): 104-125, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34028841

RESUMO

Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.


Assuntos
Macrófagos , Baço , Idoso , Fibroblastos , Homeostase , Humanos , Contagem de Leucócitos
8.
Biomed J ; 44(2): 133-143, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33863682

RESUMO

The role of Notch in the immune system was first described in the late 90s. Reports revealed that Notch is one of the most conserved developmental pathways involved in diverse biological processes such as the development, differentiation, survival and functions of many immune populations. Here, we provide an extended view of the pleiotropic effects of the Notch signaling on the innate lymphoid cell (ILC) biology. We review the current knowledge on Notch signaling in the regulation of ILC differentiation, plasticity and functions in diverse tissue types and at both the fetal and adult developmental stages. ILCs are early responder cells that secrete a large panel of cytokines after stimulation. By controlling the abundance of ILCs and the specificity of their release, the Notch pathway is also implicated in the regulation of their functions. The Notch pathway is therefore an important player in both ILC cell fate decision and ILC immune response.


Assuntos
Imunidade Inata , Linfócitos , Transdução de Sinais , Biologia , Diferenciação Celular
9.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33692218

RESUMO

BACKGROUND: Resident memory T lymphocytes (TRM) are located in tissues and play an important role in immunosurveillance against tumors. The presence of TRM prior to treatment or their induction is associated to the response to anti-Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1) immunotherapy and the efficacy of cancer vaccines. Previous work by our group and others has shown that the intranasal route of vaccination allows more efficient induction of these cells in head and neck and lung mucosa, resulting in better tumor protection. The mechanisms of in vivo migration of these cells remains largely unknown, apart from the fact that they express the chemokine receptor CXCR6. METHODS: We used CXCR6-deficient mice and an intranasal tumor vaccination model targeting the Human Papillomavirus (HPV) E7 protein expressed by the TC-1 lung cancer epithelial cell line. The role of CXCR6 and its ligand, CXCL16, was analyzed using multiparametric cytometric techniques and Luminex assays.Human biopsies obtained from patients with lung cancer were also included in this study. RESULTS: We showed that CXCR6 was preferentially expressed by CD8+ TRM after vaccination in mice and also on intratumoral CD8+ TRM derived from human lung cancer. We also demonstrate that vaccination of Cxcr6-deficient mice induces a defect in the lung recruitment of antigen-specific CD8+ T cells, preferentially in the TRM subsets. In addition, we found that intranasal vaccination with a cancer vaccine is less effective in these Cxcr6-deficient mice compared with wild-type mice, and this loss of efficacy is associated with decreased recruitment of local antitumor CD8+ TRM. Interestingly, intranasal, but not intramuscular vaccination induced higher and more sustained concentrations of CXCL16, compared with other chemokines, in the bronchoalveolar lavage fluid and pulmonary parenchyma. CONCLUSIONS: This work demonstrates the in vivo role of CXCR6-CXCL16 axis in the migration of CD8+ resident memory T cells in lung mucosa after vaccination, resulting in the control of tumor growth. This work reinforces and explains why the intranasal route of vaccination is the most appropriate strategy for inducing these cells in the head and neck and pulmonary mucosa, which remains a major objective to overcome resistance to anti-PD-1/PD-L1, especially in cold tumors.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Células T de Memória/efeitos dos fármacos , Receptores CXCR6/deficiência , Eficácia de Vacinas , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Quimiocina CXCL16/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Memória Imunológica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores CXCR6/genética , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral , Vacinação
10.
Blood ; 137(8): 1024-1036, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33025012

RESUMO

During embryonic development, multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Two different waves of thymic progenitors colonize the fetal thymus where they contribute to thymic organogenesis and homeostasis. The origin, the lineage differentiation potential of the first wave, and their relative contribution in shaping the thymus architecture, remained, however, unclear. Here, we show that the first wave of thymic progenitors comprises a unique population of bipotent T and innatel lymphoid cells (T/ILC), generating a lymphoid tissue inducer cells (LTi's), in addition to invariant Vγ5+ T cells. Transcriptional analysis revealed that innate lymphoid gene signatures and, more precisely, the LTi-associated transcripts were expressed in the first, but not in the second, wave of thymic progenitors. Depletion of early thymic progenitors in a temporally controlled manner showed that the progeny of the first wave is indispensable for the differentiation of autoimmune regulator-expressing medullary thymic epithelial cells (mTECs). We further show that these progenitors are of strict hematopoietic stem cell origin, despite the overlap between lymphopoiesis initiation and the transient expression of lymphoid-associated transcripts in yolk sac (YS) erythromyeloid-restricted precursors. Our work highlights the relevance of the developmental timing on the emergence of different lymphoid subsets, required for the establishment of a functionally diverse immune system.


Assuntos
Células Progenitoras Linfoides/citologia , Linfócitos T/citologia , Timo/citologia , Timo/embriologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Progenitoras Linfoides/metabolismo , Linfopoese , Camundongos Endogâmicos C57BL , Linfócitos T/metabolismo , Timo/metabolismo , Transcriptoma
11.
Cell Rep ; 32(6): 108004, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783932

RESUMO

During embryogenesis, lymphoid tissue inducer (LTi) cells are essential for lymph node organogenesis. These cells are part of the innate lymphoid cell (ILC) family. Although their earliest embryonic hematopoietic origin is unclear, other innate immune cells have been shown to be derived from early hemogenic endothelium in the yolk sac as well as the aorta-gonad-mesonephros. A proper model to discriminate between these locations was unavailable. In this study, using a Cxcr4-CreERT2 lineage tracing model, we identify a major contribution from embryonic hemogenic endothelium, but not the yolk sac, toward LTi progenitors. Conversely, embryonic LTi cells are replaced by hematopoietic stem cell-derived cells in adults. We further show that, in the fetal liver, common lymphoid progenitors differentiate into highly dynamic alpha-lymphoid precursor cells that, at this embryonic stage, preferentially mature into LTi precursors and establish their functional LTi cell identity only after reaching the periphery.


Assuntos
Hemangioblastos/metabolismo , Hematopoese/fisiologia , Tecido Linfoide/embriologia , Receptores CXCR4/metabolismo , Animais , Desenvolvimento Embrionário/fisiologia , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunidade Inata , Fígado/embriologia , Linfócitos/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Saco Vitelino/embriologia
12.
Mucosal Immunol ; 13(5): 732-742, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32651476

RESUMO

ILCs and T cells are closely related functionally but they significantly differ in their ability to circulate, expand, and renew. Cooperation and reciprocal functional regulation suggest that these cell types are more complementary than simply redundant during immune responses. How ILCs shape T-cell responses is strongly dependent on the tissue and inflammatory context. Likewise, indirect regulation of ILCs by adaptive immunity is induced by environmental cues such as the gut microbiota. Here, we review shared requirements for the development and function of both cell types and divergences in the orchestration of prototypic immune functions. We discuss the diversity of functional interactions between T cells and ILCs during homeostasis and immune responses. Identifying the location and the nature of the tissue microenvironment in which these interactions are taking place may uncover the remaining mysteries of their close encounters.


Assuntos
Comunicação Celular/imunologia , Imunidade Celular , Imunidade Inata , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Imunidade Adaptativa , Animais , Biomarcadores , Diferenciação Celular , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica , Imunomodulação/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais , Especificidade por Substrato
13.
Immunology ; 161(1): 28-38, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32383173

RESUMO

Tbet-deficient mice have reduced natural killer (NK) cells in blood and spleen, but increased NK cells in bone marrow and lymph nodes, a phenotype that is thought to be the result of defective migration. Here, we revisit the role of Tbet in NK cell bone marrow egress. We definitively show that the accumulation of NK cells in the bone marrow of Tbet-deficient Tbx21-/- animals occurs because of a migration defect and identify a module of genes, co-ordinated by Tbet, which affects the localization of NK cells in the bone marrow. Cxcr6 is approximately 125-fold underexpressed in Tbx21-/- , compared with wild-type, immature NK cells. Immature NK cells accumulate in the bone marrow of CXCR6-deficient mice, and CXCR6-deficient progenitors are less able to reconstitute the peripheral NK cell compartment than their wild-type counterparts. However, the CXCR6 phenotype is largely confined to immature NK cells, whereas the Tbet phenotype is present in both immature and mature NK cells, suggesting that genes identified as being more differentially expressed in mature NK cells, such as S1pr5, Cx3cr1, Sell and Cd69, may be the major drivers of the phenotype.


Assuntos
Células da Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células Matadoras Naturais/imunologia , Receptores CXCR6/metabolismo , Proteínas com Domínio T/genética , Animais , Medula Óssea/metabolismo , Transplante de Medula Óssea , Movimento Celular/genética , Células-Tronco Hematopoéticas/citologia , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/metabolismo
14.
Int J Mol Sci ; 20(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690060

RESUMO

Innate lymphoid cells (ILC) are important players of early immune defenses in situations like lymphoid organogenesis or in case of immune response to inflammation, infection and cancer. Th1 and Th2 antagonism is crucial for the regulation of immune responses, however mechanisms are still unclear for ILC functions. ILC2 and NK cells were reported to be both involved in allergic airway diseases and were shown to be able to interplay in the regulation of the immune response. CXCR6 is a common chemokine receptor expressed by all ILC, and its deficiency affects ILC2 and ILC1/NK cell numbers and functions in lungs in both steady-state and inflammatory conditions. We determined that the absence of a specific ILC2 KLRG1+ST2- subset in CXCR6-deficient mice is probably dependent on CXCR6 for its recruitment to the lung under inflammation. We show that despite their decreased numbers, lung CXCR6-deficient ILC2 are even more activated cells producing large amount of type 2 cytokines that could drive eosinophilia. This is strongly associated to the decrease of the lung Th1 response in CXCR6-deficient mice.


Assuntos
Subpopulações de Linfócitos/imunologia , Pneumonia/imunologia , Receptores CXCR6/metabolismo , Animais , Células Cultivadas , Interferon gama/genética , Interferon gama/metabolismo , Camundongos , Papaína/toxicidade , Pneumonia/etiologia , Receptores CXCR6/genética
15.
Front Immunol ; 10: 1192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191550

RESUMO

Obesity and associated liver diseases (Non Alcoholic Fatty Liver Disease, NAFLD) are a major public health problem with increasing incidence in Western countries (25% of the affected population). These complications develop from a fatty liver (steatosis) to an inflammatory state (steatohepatitis) evolving toward fibrosis and hepatocellular carcinoma. Lipid accumulation in the liver contributes to hepatocyte cell death and promotes liver injury. Local immune cells are activated either by Danger Associated Molecular Patterns (DAMPS) released by dead hepatocytes or by bacterial products (PAMPS) reaching the liver due to increased intestinal permeability. The resulting low-grade inflammatory state promotes the progression of liver complications toward more severe grades. Innate lymphoid cells (ILC) are an heterogeneous family of five subsets including circulating Natural Killer (NK) cells, ILC1, ILC2, ILC3, and lymphocytes tissue-inducer cells (LTi). NK cells and tissue-resident ILCs, mainly located at epithelial surfaces, are prompt to rapidly react to environmental changes to mount appropriate immune responses. Recent works have demonstrated the interplay between ILCs subsets and the environment within metabolic active organs such as liver, adipose tissue and gut during diet-induced obesity leading or not to hepatic abnormalities. Here, we provide an overview of the newly roles of NK cells and ILC1 in metabolism focusing on their contribution to the development of NAFLD. We also discuss recent studies that demonstrate the ability of these two subsets to influence tissue-specific metabolism and how their function and homeostasis are affected during metabolic disorders.


Assuntos
Imunidade Inata , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Biomarcadores , Metabolismo Energético , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Linfócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
16.
Annu Rev Immunol ; 37: 497-519, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026413

RESUMO

During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.


Assuntos
Linfócitos B/imunologia , Linfócitos/fisiologia , Células Progenitoras Linfoides/fisiologia , Células T Matadoras Naturais/imunologia , Timo/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Microambiente Celular , Citocinas/metabolismo , Humanos , Imunidade Inata , Ativação Linfocitária , Comunicação Parácrina , Transcriptoma
17.
Immunity ; 50(4): 1054-1068.e3, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30926235

RESUMO

Innate lymphoid cell (ILC) development proposes that ILC precursors (ILCPs) segregate along natural killer (NK) cell versus helper cell (ILC1, ILC2, ILC3) pathways, the latter depending on expression of Id2, Zbtb16, and Gata3. We have developed an Id2-reporter strain expressing red fluorescent protein (RFP) in the context of normal Id2 expression to re-examine ILCP phenotype and function. We show that bone-marrow ILCPs were heterogeneous and harbored extensive NK-cell potential in vivo and in vitro. By multiplexing Id2RFP with Zbtb16CreGFP and Bcl11btdTomato strains, we made a single-cell dissection of the ILCP compartment. In contrast with the current model, we have demonstrated that Id2+Zbtb16+ ILCPs included multi-potent ILCPs that retained NK-cell potential. Late-stage ILC2P and ILC3P compartments could be defined by differential Zbtb16 and Bcl11b expression. We suggest a revised model for ILC differentiation that redefines the cell-fate potential of helper-ILC-restricted Zbtb16+ ILCPs.


Assuntos
Regulação da Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/citologia , Imunidade Inata , Proteína 2 Inibidora de Diferenciação/genética , Linfopoese/genética , Transferência Adotiva , Animais , Linhagem da Célula , Fator de Transcrição GATA3/biossíntese , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/fisiologia , Genes Reporter , Células-Tronco Hematopoéticas/metabolismo , Proteína 2 Inibidora de Diferenciação/biossíntese , Células Matadoras Naturais/citologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Proteína com Dedos de Zinco da Leucemia Promielocítica/biossíntese , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/fisiologia , Análise de Célula Única , Linfócitos T Auxiliares-Indutores/citologia , Transcrição Gênica
18.
Allergy ; 74(5): 933-943, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30475388

RESUMO

BACKGROUND: We previously showed that patients with severe allergic asthma have high numbers of circulating ILC2s expressing CCR10. METHOD: Herein, CCR10+ ILC2s were further analyzed in the blood of healthy individuals or patients with allergic and non-allergic asthma. Characteristics of human CCR10+ and CCR10- ILC2s were assessed by flow cytometry as well as single-cell multiplex RT-qPCR. The role of CCR10+ ILC2s in asthma pathophysiology was studied in allergen-treated mice. RESULTS: When compared to healthy controls, CCR10+ ILC2s are enriched in the blood of both allergic and non-allergic severe asthmatic patients, and these cells are recruited to the lungs. Plasma concentrations of the CCR10 ligand CCL27 are significantly increased in severe asthmatics when compared to non-asthmatic patients. CCR10+ ILC2s secrete little TH 2 cytokines, but exhibit ILC1-like properties, including a capacity to produce IFN-γ. Also, single-cell analysis reveals that the CCR10+ ILC2 subset is enriched in cells expressing amphiregulin. CCR10+ ILC2 depletion, as well as blocking of IFN-γ activity, exacerbates airway hyperreactivity in allergen-challenged mice, providing evidence for a protective role of these cells in allergic inflammation. CONCLUSIONS: Frequencies of circulating CCR10+ ILC2s and CCL27 plasma concentrations represent candidate markers of asthma severity. The characterization of CCR10+ ILC2s in human samples and in mouse asthma models suggests that these cells downregulate allergic inflammation through IFN-γ production.


Assuntos
Asma/imunologia , Asma/metabolismo , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Receptores CCR10/metabolismo , Alérgenos/imunologia , Animais , Asma/diagnóstico , Asma/fisiopatologia , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Interferon gama/biossíntese , Contagem de Linfócitos , Subpopulações de Linfócitos/efeitos dos fármacos , Camundongos , Índice de Gravidade de Doença
19.
Front Immunol ; 9: 1252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930552

RESUMO

The Notch pathway is one of the canonical signaling pathways implicated in the development of various solid tumors. During carcinogenesis, the Notch pathway dysregulation induces tumor expression of Notch receptor ligands participating to escape the immune surveillance. The Notch pathway conditions both the development and the functional regulation of lymphoid subsets. Its importance on T cell subset polarization has been documented contrary to its action on innate lymphoid cells (ILC). We aim to analyze the effect of the Notch pathway on type 1 ILC polarization and functions after disruption of the RBPJk-dependent Notch signaling cascade. Indeed, type 1 ILC comprises conventional NK (cNK) cells and type 1 helper innate lymphoid cells (ILC1) that share Notch-related functional characteristics such as the IFNg secretion downstream of T-bet expression. cNK cells have strong antitumor properties. However, data are controversial concerning ILC1 functions during carcinogenesis with models showing antitumoral capacities and others reporting ILC1 inability to control tumor growth. Using various mouse models of Notch signaling pathway depletion, we analyze the effects of its absence on type 1 ILC differentiation and cytotoxic functions. We also provide clues into its role in the maintenance of immune homeostasis in tissues. We show that modulating the Notch pathway is not only acting on tumor-specific T cell activity but also on ILC immune subset functions. Hence, our study uncovers the intrinsic Notch signaling pathway in ILC1/cNK populations and their response in case of abnormal Notch ligand expression. This study help evaluating the possible side effects mediated by immune cells different from T cells, in case of multivalent forms of the Notch receptor ligand delta 1 treatments. In definitive, it should help determining the best novel combination of therapeutic strategies in case of solid tumors.


Assuntos
Imunidade Inata , Receptores Notch/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Imunofenotipagem , Fígado/imunologia , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos
20.
Trends Immunol ; 39(6): 503-514, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29567327

RESUMO

The mammalian spleen is a peripheral lymphoid organ that plays a central role in host defense. Consequently, the lack of spleen is often associated with immunodeficiency and increased risk of overwhelming infections. Growing evidence suggests that non-hematopoietic stromal cells are central players in spleen development, organization, and immune functions. In addition to its immunological role, the spleen also provides a site for extramedullary hematopoiesis (EMH) in response to injuries. A deeper understanding of the biology of stromal cells is therefore essential to fully comprehend how these cells modulate the immune system during normal and pathological conditions. Here, we review the specificities of the different mouse spleen stromal cell subsets and complement the murine studies with human data when available.


Assuntos
Imunidade Adaptativa/imunologia , Linfócitos/imunologia , Baço/imunologia , Células Estromais/imunologia , Animais , Hematopoese Extramedular/imunologia , Humanos , Camundongos , Transdução de Sinais/imunologia , Baço/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...